

Stable and Bright Perovskite Nanoparticle Thin Film for Advanced Display

Yiyang GAO, Maksym F. Prodanova, Chengbin Kanga, Valerii V. Vashchenkoa, Abhishek K. Srivastava* * State Key Laboratory of Advanced Displays and Optoelectronics Technologies, Department of Electronics and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong S.A.R, China

Introduction

We propose a facile method to develop stable and bright perovskite nanoparticles thin films for display application.

Method

Perovskite nanoparticle (PNP) are blended with monomers with photoinitiator or polymers in solution and deposited into thin $(20\mu m \text{ in })$ thickness) porous polymer film template. polymer film nuclear track Porous are membrane with vertical cylindrical pores with sub-micron diameter.

Results

Enhanced temperature, humidity and UV illumination of PNP film stability is achieved.

High Temperature Stability

Heating (90°C) and cooling cycles for PNP porous films.

UV illumination Stability

Due to the unique optical property of the porous film, the UV light has less interaction with PNP inside pores.

Conclusions

The film fabrication method is simple. The thin and flexible porous PNP film is bright and stable for color conversion display.

References

[1] M. V Kovalenko, Nano Lett., 2015, 15, 3692. [2] Y. Dong, Adv. Mater., 2016, 28, 10710–10717.

Acknowledgement

This work was supported by the RGC of Hong Kong SAR (Grant Nos. 26202019, AoE/P-02/12), and the funding's for The State Key Laboratory of Advanced Displays **Optoelectronics** and Technologies.